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INTRODUCTION 

 
The majority of food, feed and cosmetic 
products are of complex rheological nature, 
and their viscosity does not depend only on 
their composition, and environmental condi-
tions such as temperature, but also on the 
intensity of applied shear rate, shear stress, 
time of shearing, as well as on the previous 
shear and thermal history (Tiu & Boger, 
1974).Therefore, it is of a great importance to 

characterize their time-dependent rheological 
properties, especially the thixotropy as the 
most common one. By defining the thixotropic 
behaviour of the food system it is possible to 
establish its handling and storage protocols 
as well as to find relationships between 
structure and flow, and to correlate physical 
parameters with sensory evaluation (Abu-
Jdayil, 2003).  
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Abstract: Thixotropy evaluation using hysteresis loop method has been considered qualitative, because it is 
dependent on maximal shear rate. The problem becomes greater when the system maximal shear rate is 
higher than the one of rheometer. Modelling the experimentally obtained data by different flow equations and 
deriving the corresponding mathematical expressions for coefficient of thixotropy it was possible to obtain 
expressions which are independent on shear rate range used in rheological measurements. Possibilities for 
application of such derived expressions using Mathcad software package were shown.   
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Thixotopic systems, under application of ex-
ternal mechanical forces, loose their internal 
organization and structure exhibiting thus the 
decay of the viscosity, by time (Đaković, 
1979) which is followed by a gradually re-
covery of the structure (viscosity) when the 
force is removed. Thixotropy is usually eva-
luated by measuring the area enclosed bet-
ween ascending and descending flow curves 
obtained by linearly increasing and decre-
asing shear rate over time. This test is named 
hysteresis loop test and was developed by 
Green and Weltmann (1946). Fig. 1 shows 
one typical hysteresis loop.  

Fig.1. Hysteresis loop test 

The value of the hysteresis loop area indica-
tes the energy required to break down the thi-
xotropic structure (Schramm, 2000). Although 
useful for demonstrating the thixotropic beha-
viour of different product the hysteresis area 
is considered to be the qualitative measure of 
thixotropy since it depends on the parameters 
that define hysteresis loop method: the maxi-
mum shear rate and the times of duration of 
linear increasing and decreasing of shear 
rate (Armelin et al., 2006). Dolz et al. (1997) 
made an attempt to quantify the hysteresis 
test by introducing the relative hysteresis 
area which was defined as the ratio of the 
hysteresis area to the area beneath the as-
cending shear curve. Dokić et al. (1999) used 
the same parameter, but they named it the 
coefficient of thixotropic breakdown:  
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where: ( )    is the flow equation corres-

ponding to ascending flow curve, ( )   is the 
flow equation corresponding to descending 
flow curve and m  is the maximal shear rate. 

This coefficient can be calculated by simple 
integration method. However, in practical 
rheological measurements maximal shear 
rate of the rheometer mv  (Fig. 1) is usually 

smaller than the rate m  needed for an ins-

tantneous structure breakdown. Dokić et al. 
(1999) proposed the solution for overcoming 
the mentioned discrepancy. At mv  they app-

lied constant mv  for the period of time re-

quired for completely breakdown of the struc-
ture. That way a truncated thixotropic loop 
was obtained. However, by modeling the flow 
curves with different equations they su-
cceeded to predict the maximal shear rate, 

m  and to derive the mathematical expre-

ssion for coefficient of thixotropy that will be 
dependent only on the parameters of flow 
equation, and not on the m . 

The aim of this article was to determine the 
truncated flow curves of two different thixo-
tropic sample and to calculate the values of 
maximal shear rate, m and parameters of co-

rresponding flow equations using the expre-
ssions given by Dokić et al. (1999) and 
appropriate software package for numerical 
analysis. While for the sample having non-
ideal flow curve it was not possible to calcu-
late m , the new function was introduced and 

new solution proposed. 

2. Theoretical background 

The ascending and descending flow curves in 
hysteresis loop can be described using va-
rious equations. For the purpose of this paper 
the two most common flow equations were 
used. The first one was:  
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0 ( 1)m     (2) 

where: 0  is the yield stress and m is the 

degree of non-Newtonian behaviour. By re-
placing ( )    and ( )    in the expression (1) 
with their respective equation (2), the follo-
wing relation for coefficient of thixotropic 
breakdown is obtained:  
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where: 0  , 0   are yield stresses and m' and 

m" are parameters of equations correspon-
ding to ascending and descending flow cur-
ves. 

When the system of flow equations: 

0 ( 1)m       

0 ( 1)m       

is solved for the following conditions: 
   and m   , the value of m is ob-

tained: 
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Substituting m  in the equation (3) with the 

expression (4) and taking into account that 

 1 1m   , the following relation for Kd is 

obtained:  
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According to the expression (5), the 
coefficient of thixotropic breakdown depends 
only on the degree of non-Newtonian be-
havior. That means that it is possible to eli-
minate the influence of one measuring con-
dition – maximum shear rate, m , by mo-

deling the experimental results with the flow 
curve equation.  

The second flow equation used for modeling 
the flow behavior of the thixotropic system 
was the Herschel-Bulkley equation: 

0
nK      (6) 

where: 0  is the yield stress, K is the mea-

sure of consistency of the system and n is 
showing the degree of non-Newtonian beha-
viour. 

If the flow equation (6) is applied instead of 
(2), the following relation for coefficient of 
thixotropic breakdown is obtained:  
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where: 0  , K' and n' are parameters of 

equation describing ascending flow curve, 

0  , K" and n" are parameters of equation co-

rresponding to descending flow curve and 

m is maximum shear rate. 

Since the shear rate in relation (7) depends 
only on the structure of thixotropic system 
and does not depend on maximum shear rate 
of rheometer ( mv ), the coefficient Kd also 

does not depend on measuring conditions. 

The nature of the equation (6) does not 
enable m  to be calculated directly from the 

system of equation ( )   and ( )   as it was 
possible for the equation (2). To calculate the 
value of m  from the equation (6) the nume-

rical analysis has to be employed. Firstly, 
new function was introduced: 

( ) ( ) ( )f           (8) 

The aim was to find the value of   at which 

the function ( )f  becomes zero, because 

that value of   corresponds to m . In numeri-



Dapcević, T. et al./Food Processing, Quality and Safety 35 (2008) 1, 33-39 

 

 
 

36

 
cal analysis these values of   are called the 

roots of the function ( )f  . Root finding is 
usually an iterative procedure, which starts 
with an estimate of the root and produces be-
tter approximations.The iteration is stopped 
when the following conditions are fulfilled:  

0( ) 0.001 (0)f f        

(The smallness of f(x) test)  

or 1 0.000001n n n                      

(The closeness of successive approximations 
test)  

To start looking for a root, one needs to give 
the presumption value for a root. This value 
can be given as interval (bracket way) or as a 
single number which represent the value 
close to root (good starting value way). The 
way of giving the presumption and stopping 
the iterations depends on the root-finding 
method used. Some of the root-finding 
methods are: the Secant method, the Bisec-
tion method, the Newton-Raphson method, 
the False position method etc. 

The unknown parameters from both flow 
equations (Eq. 2 and Eq. 6) were determined 
by the curve fitting techniques. 

MATERIALS AND METHODS 

Thixotropic behaviour of two different sam-
ples was characterize by hysteresis loop test: 
shear rate was increased linearly from 0 to 
700s-1 in 3 min, held constant at 700s-1 till to-
tal system destruction, and decreased linear-
ly from 700 to 0s-1 in 3 min. The flow mea-
surements were performed by HAAKE 
RheoStress 600 rheometer (Thermo Scien-
tific, Germany) equipped with Z20 cylinder 
measuring geometry at the temperature of 
20±0.1 C. The numerical analysis was per-
formed using Mathcad Professional 2000 
software package.  

RESULTS AND DISCUSSION 

The experimentally obtained data set for 
sample 1 is presented in Fig. 2 and Fig. 3, in 
the form of crosses (×). It can be clearly seen 
that the maximum shear rate used was not 
enough for the complete destruction of a 
sample. For predicting the maximal shear 
rate, the Eq. 2 was used firstly. The para-
meters of the model flow equation were 
calculated using the genfit function. The fun-
ction has the following form: 

( , , , )genfit vx vy guess f  

where: vx and vy are vectors containing the 
x-values and the y-values, respectively, of the 
data, guess is a vector of initial guess values 
for the parameters and f is the model equ-
ation. To get a better fit, f argument is better 
to be in the form of vector F which first entry 
is the model equation f, and which remaining 
entries are the partial derivatives of f with res-
pect to the unknown parameters. 

For the Eq. 2 vector F was: 
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where: 0 0a  and 1a m . Setting the guess 

vector as guess = (2; 0.5) the following forms 
of ascending and descending flow equations 

were obtained: 0.265( ) 7.042 ( 1)        and 
0.381( ) 3.211 ( 1)       , respectively. They 

are presented in Fig. 2 as ( )g D and ( )d D , 

because of the shortcoming of Mathcad soft-
ware in writing the functions with dots and 
accents. 

The value of maximum shear rate, calculated 

using the Eq. 4, was 1870.24m s  . Finally 

the coefficient of thixotropic breakdown, cal-
culated using the Eq. 5 was 0.084dK  . 
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Fig. 2. Flow curve for sample 1 fitted with 
Equation 2 (experimentally obtained data (×) and 

theoretically obtained data (___)) 

The Eq. 6 was also employed for system flow 
behaviour description. In that case the last 
argument in genfit function had the following 
form:  
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where: 0 0a  , 1a K  and 2a n . For 

guess = (2; 2; 0.5) the following forms of 
ascending and descending flow equations 

were obtained: 0.404( ) 9.364 2.207       and 
0.441( ) 3.269 1.996      , respectively. They 

are presented in Fig. 3 as ( )g D and ( )d D .  

The maximum shear rate was determined 
using the root function: 

( ( ), )root f x x  

where: f(x) is the function which root is seek, 
and x is the guess for root value. For our 
function the root form was: 

( ( ) ( ), )root          

and obtained value for maximum shear rate 
was: 1015m  s-1. The corresponding coeffi-

cient of thixotropic breakdown calculated 
from the Eq. 7 was: 0.072dK  .  

For the sample 2 the same procedure for cal-
culating the maximal shear rate and predic-

ting the maximal shear rate was used. 
Modeling the experimental data of the sample 
2 with the Eq. 2 (Fig. 4) resulted in following 
ascending and descending flow equation 
forms, and maximal shear rate and coefficient 
of thixotropic breakdown values:  

0.260( ) 7.631 ( 1)        , 
0.362( ) 3.845 ( 1)       , 1827.86m s   and 

0.075dK  . 

However, as it can be seen from the Fig. 5 
fitting the experimental data, obtained for 
sample 2, with the Herschel-Bulkley equation 
(Eq. 6) did not result in determining the value 
of maximal shear rate.  
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Fig. 3. Flow curve for sample 1 fitted with 
Equation 6 (experimentally obtained data (×) and 

theoretically obtained data (___)) 
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Fig. 4. Flow curve for sample 2 fitted with 
Equation 2 (experimentally obtained data (×) and 

theoretically obtained data (___)) 
 

The reason was the character of the function 
8 (Eq. 8). Namely, the condition for finding 
the root of the function is that the function is 
monotonically decreasing. For the real sys-
tems it is hardly to achieve since they are of 
complex nature. Therefore the function 8 was 
correcting by eliminating the values which 
disturb the monotonic of the function. 
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Fig. 5. Flow curve for sample 2 fitted with 
Equation 6 (experimentally obtained data (×) and 

theoretically obtained data (___)) 

The function 8 before and after correction is 
shown in Fig. 6. 

New, corrected results were modeled with the 
Eq. 6 following the same procedure as for 
uncorrected results and the obtained values 
for ascending and descending flow equation 
forms, and maximal shear rate and coefficient 
of thixotropic breakdown values were: 
 

0.366( ) 8.964 2.991      and 
0.342( ) 1.079 4.474      , 11010m s   and 

0.057dK  . 

All the obtained results are summarized in 
Table 1. Since, the aim was to approximate 
the experimental data with the corresponding 
flow equation, the quality of approximation 
(correlation) was evaluated by least square 
(LS) method. The results are listed in Table 
1, too. 
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Fig. 6. Function describing the difference between 
ascending and descending flow curve before and 

after correction 
 

Table 1.  
Various parameters and least square values (LS) obtained modeling the samples by different flow equation 
 

Flow equation 
Sample 

0 ( 1)m   
 (Eq. 2) 

 

0
nK    

 (Eq. 6) 

S
a

m
p

le
 1

 

Ascending flow curve eq. 0.2657.042 ( 1)      
0.4049.364 2.207      

Descending flow curve eq. 0.3813.211 ( 1)      
0.4413.269 1.996      

LS value for a. curve 7.0951 2.1942 

LS value for d. curve 5.1297 4.0172 

1( )m s   
870.24 1015 

Kd 0.084 0.072 

S
a

m
p

le
 2

 

Ascending flow curve eq. 0.2607.631 ( 1)      
0.3668.964 2.991      

Descending flow curve eq. 0.3623.845 ( 1)      
0.3421.079 4.474       

LS value for a. curve 12.8261 8.6079 
LS value for d. curve 2.1509 2.0861 

1( )m s   
827.86 1010 

Kd 0.075 0.057 
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According to the results obtained by least 
square method Eq. 6 approximated the expe-
rimental results better than the Eq. 2. 
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Fig. 7. Corrected flow curve for sample 2 
(experimentally obtained data (×) and theoretically 

obtained data (___)) 

CONCLUSION 

By modeling the experimentally obtained flow 
curves with different flow equations it is po-
ssible to overcome the shortcoming of the 
rheometers to reach the real maximal shear 
rate. The same flow equations can also be 
used to derive the mathematical expressions 
for the coefficient of thixotropic breakdown. 
Thus, derived expressions include only the 
parameters from flow equations, so they are 
independent on shear rate range used in 
rheological measurement. However, it is im-
portant to choose the appropriate flow equa-
tion. The calculations done using Herschel-
Bulkley equation were more complicated, be-
cause of the nature of the equation. However, 
this equation better fits to experimentally 
obtained data which was confirmed by least 
square calculations.   
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